systems theory

Systems theory is the interdisciplinary study of systems. A system is a cohesive group of interrelated and interdependent parts which can be natural or human-made. Every system is bounded by space and time, influenced by its environment, defined by its structure and purpose, and expressed through its functioning. A system may be more than the sum of its parts if it expresses synergy or emergent behavior.

Changing one part of a system may affect other parts or the whole system. It may be possible to predict these changes in patterns of behavior. For systems that learn and adapt, the growth and the degree of adaptation depend upon how well the system is engaged with its environment. Some systems support other systems, maintaining the other system to prevent failure. The goals of systems theory are to model a system’s dynamics, constraints, conditions, and to elucidate principles (such as purpose, measure, methods, tools) that can be discerned and applied to other systems at every level of nesting, and in a wide range of fields for achieving optimized equifinality.[1]

General systems theory is about developing broadly applicable concepts and principles, as opposed to concepts and principles specific to one domain of knowledge. It distinguishes dynamic or active systems from static or passive systems. Active systems are activity structures or components that interact in behaviours and processes. Passive systems are structures and components that are being processed. For example, a program is passive when it is a disc file and active when it runs in memory.[2] The field is related to systems thinkingmachine logic, and systems engineering.

Key concepts

  • System: An entity made up of interrelated, interdependent parts.
  • Boundaries: Barriers that define a system and distinguish it from other systems in an environment.
  • Homeostasis: The tendency of a system to be resilient with respect to external disruption and to maintain its key characteristics.
  • Adaptation: The tendency of a system to make the internal changes to protect itself and keep fulfilling its purpose.
  • Reciprocal transactions: Circular or cyclical interactions that systems engage in such that they influence one another.
  • Feedback loop: The process by which systems self-correct based on reactions from other systems in the environment.
  • Throughput: Rate of energy transfer between a system and its environment over time.
  • Microsystem: The system closest to the client.
  • Mesosystem: Relationships among systems in an environment.
  • Exosystem: A relationship between two systems that has an indirect effect on a third system.
  • Macrosystem: A larger system that influences clients, such as policies, administration of entitlement programs, and culture.
  • Chronosystem: A system composed of significant life events affecting adaptation.

Origin of the term

The term “general systems theory” originates from Bertalanffy’s general systems theory (GST). His ideas were adopted by others including Kenneth E. Boulding, William Ross Ashby and Anatol Rapoport working in mathematics, psychology, biology, game theory, and social network analysis.

In sociology, systems thinking started earlier, in the 20th century. Stichweh states:[3] “… Since its beginnings the social sciences were an important part of the establishment of systems theory… the two most influential suggestions were the comprehensive sociological versions of systems theory which were proposed by Talcott Parsons since the 1950s and by Niklas Luhmann since the 1970s.” References include Parsons’ action theory[4] and Luhmann’s social systems theory.[5]

Elements of systems thinking can also be seen in the work of James Clerk Maxwell, in particular control theory.

Overview

As a transdisciplinary, interdisciplinary, and multiperspectival endeavor, systems theory brings together principles and concepts from ontology, the philosophy of science, physics, computer science, biology and engineering as well as geography, sociology, political science, psychotherapy (especially family systems therapy), and economics. Systems theory promotes dialogue between autonomous areas of study as well as within systems science itself.Systems theory is manifest in the work of practitioners in many disciplines, for example the works of biologist Ludwig von Bertalanffy, linguist Béla H. Bánáthy, sociologist Talcott Parsons, and in the study of ecological systems by Howard T. Odum, Eugene Odum and is Fritjof Capra’s study of organizational theory, and in the study of management by Peter Senge, in interdisciplinary areas such as Human Resource Development in the works of Richard A. Swanson, and in the works of educators Debora Hammond and Alfonso Montuori.

In this respect, with the possibility of misinterpretations, von Bertalanffy[6] believed a general theory of systems “should be an important regulative device in science”, to guard against superficial analogies that “are useless in science and harmful in their practical consequences”. Others remain closer to the direct systems concepts developed by the original theorists. For example, Ilya Prigogine, of the Center for Complex Quantum Systems at the University of Texas, Austin, has studied emergent properties, suggesting that they offer analogues for living systems. The distinction of autopoiesis as made by Humberto Maturana and Francisco Varela represent further developments in this field. Important names in contemporary systems science include Russell Ackoff, Ruzena Bajcsy, Béla H. Bánáthy, Gregory Bateson, Anthony Stafford Beer, Peter Checkland, Barbara Grosz, Brian Wilson, Robert L. Flood, Allenna Leonard, Radhika Nagpal, Fritjof Capra, Warren McCulloch, Kathleen Carley, Michael C. Jackson, Katia Sycara, and Edgar Morin among others.

With the modern foundations for a general theory of systems following World War I, Ervin Laszlo, in the preface for Bertalanffy’s book: Perspectives on General System Theory, points out that the translation of “general system theory” from German into English has “wrought a certain amount of havoc”:[7]

It (General System Theory) was criticized as pseudoscience and said to be nothing more than an admonishment to attend to things in a holistic way. Such criticisms would have lost their point had it been recognized that von Bertalanffy’s general system theory is a perspective or paradigm, and that such basic conceptual frameworks play a key role in the development of exact scientific theory. .. Allgemeine Systemtheorie is not directly consistent with an interpretation often put on ‘general system theory,’ to wit, that it is a (scientific) “theory of general systems.” To criticize it as such is to shoot at straw men. Von Bertalanffy opened up something much broader and of much greater significance than a single theory (which, as we now know, can always be falsified and has usually an ephemeral existence): he created a new paradigm for the development of theories.[8]

“Theorie” (or “Lehre”), just as “Wissenschaft” (translated Science), “has a much broader meaning in German than the closest English words ‘theory’ and ‘science'”.[7] These ideas refer to an organized body of knowledge and “any systematically presented set of concepts, whether empirically, axiomatically, or philosophically” represented, while many associate “Lehre” with theory and science in the etymology of general systems, though it also does not translate from the German very well; its “closest equivalent” translates as “teaching”, but “sounds dogmatic and off the mark”.[7] While the idea of a “general systems theory” might have lost many of its root meanings in the translation, by defining a new way of thinking about science and scientific paradigms, Systems theory became a widespread term used for instance to describe the interdependence of relationships created in organizations.

A system in this frame of reference can contain regularly interacting or interrelating groups of activities. For example, in noting the influence in organizational psychology as the field evolved from “an individually oriented industrial psychology to a systems and developmentally oriented organizational psychology”, some theorists recognize that organizations have complex social systems; separating the parts from the whole reduces the overall effectiveness of organizations.[9] This difference, from conventional models that center on individuals, structures, departments and units, separates in part from the whole, instead of recognizing the interdependence between groups of individuals, structures and processes that enable an organization to function. Laszlo[10] explains that the new systems view of organized complexity went “one step beyond the Newtonian view of organized simplicity” which reduced the parts from the whole, or understood the whole without relation to the parts. The relationship between organisations and their environments can be seen as the foremost source of complexity and interdependence. In most cases, the whole has properties that cannot be known from analysis of the constituent elements in isolation. Béla H. Bánáthy, who argued—along with the founders of the systems society—that “the benefit of humankind” is the purpose of science, has made significant and far-reaching contributions to the area of systems theory. For the Primer Group at ISSS, Bánáthy defines a perspective that iterates this view:[11][full citation needed]

The systems view is a world-view that is based on the discipline of SYSTEM INQUIRY. Central to systems inquiry is the concept of SYSTEM. In the most general sense, system means a configuration of parts connected and joined together by a web of relationships. The Primer Group defines system as a family of relationships among the members acting as a whole. Von Bertalanffy defined system as “elements in standing relationship.”

Similar ideas are found in learning theories that developed from the same fundamental concepts, emphasising how understanding results from knowing concepts both in part and as a whole. In fact, Bertalanffy’s organismic psychology paralleled the learning theory of Jean Piaget.[12] Some consider interdisciplinary perspectives critical in breaking away from industrial age models and thinking, wherein history represents history and math represents math, while the arts and sciences specialization remain separate and many treat teaching as behaviorist conditioning.[13] The contemporary work of Peter Senge[14] provides detailed discussion of the commonplace critique of educational systems grounded in conventional assumptions about learning, including the problems with fragmented knowledge and lack of holistic learning from the “machine-age thinking” that became a “model of school separated from daily life”. In this way some systems theorists attempt to provide alternatives to, and evolved ideation from orthodox theories which have grounds in classical assumptions, including individuals such as Max Weber and Émile Durkheim in sociology and Frederick Winslow Taylor in scientific management.[15] The theorists sought holistic methods by developing systems concepts that could integrate with different areas.

Some may view the contradiction of reductionism in conventional theory (which has as its subject a single part) as simply an example of changing assumptions. The emphasis with systems theory shifts from parts to the organization of parts, recognizing interactions of the parts as not static and constant but dynamic processes. Some questioned the conventional closed systems with the development of open systems perspectives. The shift originated from absolute and universal authoritative principles and knowledge to relative and general conceptual and perceptual knowledge[16] and still remains in the tradition of theorists that sought to provide means to organize human life. In other words, theorists rethought the preceding history of ideas; they did not lose them. Mechanistic thinking was particularly critiqued, especially the industrial-age mechanistic metaphor for the mind from interpretations of Newtonian mechanics by Enlightenment philosophers and later psychologists that laid the foundations of modern organizational theory and management by the late 19th century.

One thought on “systems theory

Leave a Reply

Your email address will not be published. Required fields are marked *