Some Theories of Brain and Mind in system perspective

In comparison with other animals, human beings are relatively slow and ineffective. Our physical strength and general performance fall far below that of animals of our own size. The human life-span is also short when compared with such different animals as the elephant or the Galapagos tortoise which limits the amount of human accumulated experience. We cannot remain in water for a long time, or fly; our body can only survive within a very limited internal and external temperature range and we must have oxygen to breathe.

We tire rather fast and spend half of our life time resting or sleeping. During the other half we are mostly hungry and engaged in eating or digesting food. The range and sensitivity of our sense organs are also limited; especially in comparison with birds and insects we are not able to see as far or to detect rapid movements. Our hearing and smell are inferior in comparison with that of our own dogs. All our senses are easily saturated by information — not too much per unit of time and of right kind, please!

Psychologically, we are very subjective beings, always looking for a meaning to our existence. We often compile fragmented data from our senses to construct an artificial whole, sometimes initiating very strange decisions and actions. We are excellent at adapting reality to our personal maps, remembering selectively and putting new facts into old moulds. Facts are generally interpreted to our own advantage. What is unknown frightens us  and we attempt to neutralize it by creating myths, rituals and traditions.

The above description ranks human beings low on the scale of existing animals but, looking around, we find ourselves to be in some ways extremely successful. In spite of our shortcomings we somehow solve difficult problems and make reasonable decisions in critical situations. Man is apparently something more than a featherless biped (in the words of Plato) — thanks to his brain with its outstanding information processing capability. This brain with its error tolerances is specialized in the weighing of uncertainty and making creative associations between different objects. It is also special because thoughts cannot be reduced to algorithms and because it is not programmed by an outsider. “The brain is merely Nature’s latest means of self-preservation” (Rosh Ashby).

According to Miller’s theory the brain is the equivalent of the decider and associator at the individual level. In Beer’s Brain of the Firm the decider and associator at higher levels are treated as a metaphorical brain. In Lovelock’s Gaia hypothesis we find humanity in the role of the huge, global brain of mother earth. Thus we uncover the idea of the brain function as a concept distributed among individuals in the higher levels of systems hierarchies. Genetically specialized individuals fulfilling the role of ‘organizational brain’ are not known in nature, although other essential functions such as the ‘organizational reproducer’ (queen bee) have been developed.

Apparently, the organizational brain is too important to be located in one single place as it manages functions directly involving the continuous existence of the organization. To minimize its vulnerability, a distribution strategy has been favoured by the development. Thus, in a sense Lovelock’s ‘global brain’ exists everywhere and nowhere, something which also may be said of the individual mind. Therefore, it is not possible to identify mind in a single part or centre of the brain. It is the specific mode of interaction between parts of the brain that give rise to the phenomenon of mind.

The mind-brain relationship can be exemplified by written language. No pre-established correlation between a sequence of characters and its meaning exists but at a given time and in a given context, a reliable correlation occur. A self-organizing and self- specifying process is at work.

When treating the human brain and its information processing, the traditional body/mind problem is brought to the fore. How can billions of interconnected nerve cells in a brain give rise to feelings, thought, purpose, and awareness?

Regarding the mind, some researchers maintain the eliminativist position. This tells us that the body-mind problem is no problem at all. It will simply disappear when brain functions are fully understood. Others see the mind as an epiphenomenon, a byproduct of physiological causes where the thoughts relates to the brain as the gall to the liver or the urine to the kidney. The mind is possible to explain by a suitable reduction to antecedent physical conditions. This has been the source of the witticism from generations of lecturers: ‘What is mind? No matter. What is matter? Never mind’. While some reseachers maintain the eliminativist position (the body-mind problem is not really a problem at all and will disappear when brain functions are fully understood), other adhere that it has two aspects, one active and one passive.

Usually the active aspect is known as the question of how the conscious mind by its will can influence the motion of material objects. How can the mind, if it has no physical existence, initiate physical changes in the brain? The passive aspect questions how a material object such as the brain can evoke consciousness. How can brain-cell activity give rise to subjective experience of an T looking out at the world?

The body/mind problem thus concerns free-will, intuition, creativity and the subjective unity of experience. The body/mind problem is today often interpreted in terms of quantum physics. The duality of body and mind reflects the basic duality between wave and particle — the origin of our physical existence according to quantum theory.

Source: Skyttner Lars (2006), General Systems Theory: Problems, Perspectives, Practice, Wspc, 2nd Edition.

Leave a Reply

Your email address will not be published. Required fields are marked *