Virtual reality

In the same way that a telephone is a tool to facilitate conversation over long distances, the technology of virtual reality, or VR, is primarily a facilitator of a total remote communication experience. A higher, more effective level of communication is now possible by the amalgamation of imaging and computing power. This is something which has opened up the possibility for shared expertise and experience in a way which was impossible to imagine only a few years ago.

Behind the concept of VR lies the fact that human brains work considerably better through sight, sound, touch and smell instead of just with text and numbers. Of course, there are different levels of experience involved when just looking at a picture of an aquarium, looking at a real aquarium or putting on scuba gear and swimming in it.

Besides better shared real events, VR has made possible virtual experiences that are impossible or too dangerous in real life. It may even extend the boundaries of our senses beyond what we have experienced earlier when the user takes an active, participatory role in a world created by the computer. The French author Marcel Proust once said that ‘the real voyage of discovery consists not in seeking new landscapes but in having new eyes.’ In our time those new eyes are located inside the VR helmet experiencing this phenomenon called virtualization.

Among the qualities of the VR is the absence of all  physical limitations belonging to the real world. Gravity, speed limits and other phenomena dependent on the laws of nature can be disregarded in the virtual world. Virtual things can be examined from every possible angle and be enlarged or reduced to a degree only dependent on the speed and power of the computer being used and the quality of the  model. Basically, VR is nothing more than a three-dimensional computer simulation where the executor is situated inside the image. From this position he can change the direction of view and observe new parts of the simulated surroundings. He can also twist, turn, and move objects which are part of the image.

To create a Virtual World, it is necessary to have at one’s disposal a very powerful computer and a large database attached to a high capacity communication system. The computer records the movements of the user, calculates the consequences and presents new scenes of the VR which is displayed in the helmet. The computer must have sufficient memory to accommodate a whole virtual world and be so powerful that it can represent this world in two stereographic scenes. Furthermore, the calculations have to be updated so frequently that the user has no impressions of a disjointed world.

Another key component is the helmet which has two purposes. It registers in what direction the wearer looks and it presents the VR. To do this, it has sensors which report the movements to the computer and two small monitor screens, one for each eye. Together the screens present a three-dimensional scene of the virtual surroundings. The combined effects of the presented scenes, a built-in stereophonic audio system and the sensitivity for head movements, create the necessary conditions for the user to merge with the virtual world. The fact that the helmet screens off reality facilitates the process. The third key- component is a three- dimensional pointing device which is used to highlight details and to influence the VR. This is also a steering device with which to transport oneself.

VR has a rapidly expanding area of applications within various fields, some of which will be mentioned here. Telepresence, which can be described as the projection of a human mind to a remote site, has many industrial and military applications. Telepresence is often combined with the remote control of robotic devices, then called telemanipulation.

Imagine a robot working inside a damaged nuclear plant which is emitting strong radiation. It is manipulated by an operator from a place hundreds of miles away. The robot is equipped with TV cameras, microphones and various sensors for radiation, temperature, moisture, etc. and is continuously transmitting information back to the operator. The operator is wearing a helmet provided with a complete audio/ video system and tracking devices. Equipped with this helmet and using data- gloves and a steering device, together with adequate feedback arrangements, it is possible for the operator to feel as if he is in the place of the robot. By turning his head, the operator simultaneously turns the robot’s ‘head’ and gets a new perspective of the interior inside his helmet. The data-glove in turn commands the robot’s arm and receives a sensory virtualization of the manipulated object. The operator is now interacting with the remote environment, the system being the medium.

Today, commercial aircraft and car manufacturers routinely use VR environments for designing and developing their new models. The new technique is an extension of the old computer-aided design or  CAD where three-dimensional drawings are created on a computer screen. Without use of a pencil, the drawings are then manipulated, updated and stored in a database. The whole concept can then be analyzed and even tested in a simulated destruction without actually having been built, something called computer-aided engineering or CAE. By this means, the need for developing scalemodels has been dramatically reduced, as has the need for building and testing working systems as prototypes. Architectural design appears to be especially well-suited to merge with VR technology. Here, a technique called ‘walk-through’ has been developed which facilitates cooperation between clients, designers and subcontractors. By access to the virtual construction, the coming design can be inspected from inside and any proposals for alterations can be put forward immediately. Of course, all this takes place before any actual construction has begun.

Walk-throughs of quite another kind can be used in VR applications for network maintenance. In a virtual electronic landscape that visualizes the nodes and links of a communication network, maintenance personnel can move around and investigate the switches. Problems can be discovered, data-flows optimized and new connections established before congestion arises. Visualizations that illustrate different properties and flows of the network can be expressed via the width of the links, their colour and excitation. See Figure 10.4.

Applications of VR in the medical area are already numerous. Telemanipulated microsurgery has been particularly successful where a specialist performs an operation by being virtually inside the patient’s body.

Finally, the world of entertainment has to be mentioned. Many video entertainment centres already exist which have different kind of VR simulators. Here, it is possible to experience the working environment of a jet-fighter pilot, a submarine commander or a racing driver.  Also arcade games are offered where the participants look into periscopelike devices which give three-dimensional images. In many of these games it is possible to create personalities in animated characters according to one’s own wishes. These virtual egos are then put into action as part of various adventures.

Source: Skyttner Lars (2006), General Systems Theory: Problems, Perspectives, Practice, Wspc, 2nd Edition.

Leave a Reply

Your email address will not be published. Required fields are marked *