A hierarchy of memory

A crucial step in the development of the human race was the possibility of using a language. It liberated the individual from the compulsion to merely learn from his own experience. We became a new and advanced kind of information processor. Use of natural language presupposes an extensive memory, something which in itself has been a basis for human survival and success. This was also a big step forward in the ability to construct mental models as thinking is organized by our language. With language and associated forms of communication, model building could be shared with other fellows. All members of a society now could benefit from knowledge discovered by any individual. It liberated the individual from the compulsion to merely learn from his own experience. Knowledge could be accumulated across generations.

Before the age of general abilities to read and write, the only place for memory storing and retrieval was in the brain. Memory was conserved through transfer from father to son and certain techniques to facilitate this process evolved. The storyteller, who had an important function as a living memory, used tricks like rhythm and rhyme to support the process of remembrance. Here we may see the beginning of poetry and literature. Special memory techniques, mnemonics, were invented in prehistoric times and especially well-known among the ancient Greeks, who had formal courses in the ‘art of remembering’. Central to every method was the organization of the material to be learned so that it could be retrieved when needed. Mnemonic systems are designed especially to impose meaning upon otherwise unrelated items. The range of techniques used includes the method of places, where some geographical location is used as a cue for retrieving items; the method of associations, where simple associations are sought between each of the items, connecting them into a meaningful story; and the method of keywords, where otherwise unrelated items are linked to numbers.

People with a special talent for remembering, who are said to have an eidetic memory, have always existed. They are noticed in the literature because of the problematic consequences of remembering literally everything that they come in contact with. Since 1991, persons with extraordinary good memory has met in the World Memory Championship in London. The competition has ten different areas. One is to remember the face and name of 99 unknown persons. Another is to remember the sequence of 4500 binary numbers. A third is to remember the sequence of 52 playingcards shown in five minutes. In “random words” the participants have fifteen minutes to remember as many words as possible from a list and render the succession correct.

Paradoxically, memory researches have found that winners of the contest in most cases do not have a special intelligence or talent. Instead, their capacity depends on motivation and purposeful training. Their memory also seems to be limited to a certain area of knowledge.

With the invention of memory supporting artefacts and the art of writing, it became possible to store information and knowledge outside of the human brain. Human memory and intellect could be released from the task of remembering and be used in the creation and development of knowledge. In a sense, the invention of written language indicates the birth of science.

A more precise analysis of the many aspects of information will establish the nature of what really should be remembered and stored in the various kinds of memories. The following terms are used quite differently, depending on context and intention:

  • capta
  • data
  • information
  • knowledge
  • wisdom

The arrangement can be seen as a continuum, whose parts lead from one to the next, each representing a step upward in human cognitive functioning.

If a basic event in the surrounding world is registered as a change in the state of a sensor (for instance a neuron) it makes sense to speak of capta. This change may be preserved for a certain period, being experienced for example as a lingering sense of heat. When some rules, comprehensible for the observer, are applied to organize such basic representations of events, data is generated (singular datum). Numerals and the alphabet are such representations and the heat can be expressed on a Celsius scale. Naturally, data can be recorded and presented quite mechanically, without the perception of living beings.

Data reaching our senses and making us aware that something has changed or is going on is said to give us information. By information is thus meant human interpretation or processing of data. This implies that it had been fitted into categories and classification schemes or other patterns. Then we have cognitive or physical representation of data about which we are aware. In other words, we have been informed. After the interpretation, information is emergent in relation to data. This is why information cannot be quantified, in contrast to data… Assigning meaning and understanding to information by use of higher mental processes and further systematization and structuring makes it possible to speak of knowledge. This in turn may be transformed to wisdom when values are included in making judgements.

Poets and philosophers have always been aware of the delicate intrinsic nature of the continuum and the borders of its parts. T. S. Eliot says:

Where is the life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in the information?

(T. S. Eliot)

A hierarchy of memory, capable of storing relevant parts of the continuum or intelligence spectrum presented above, will have the following shape:

  • Genetic memory, existing in the genes.
  • Immunity memory, existing in antivirus cells.
  • Accumulated experience and knowledge, stored in the brain.
  • Written information, stored on various materials.
  • Magnetic and optical information, stored in databases.
  • Encyclopedias, books, paintings etc. stored in libraries.
  • Metainformation, stored in universities, museums, gene banks, nature reserves, etc.

From this hierarchy it can be seen how different levels of living systems expand their memory capacity. While the cell stores its information in the genes and the organism in the brain, the group uses certain common instructions, calendars and almanacs. On the organizational level we find information stored in archives and accounts, whereas the national and supranational levels store their metainformation in valid laws and conventions. The main memory of the phenomenon of science must be considered to be the university. Culture must also be considered a memory wherein humankind has stored its increasing knowledge.

The memory expansion depicted in the hierarchy is only possible if a parallel development among memory artefacts take place. In reality it has always been an interaction between memory and its artefacts. Advanced artefacts make possible advanced information processing and vice versa. This interaction, made possible primarily through a capacity for language and writing, and the extension of images far beyond personal experience and lifetime, is a main driving force behind the exponential increase in the speed of human development.

The memory artefacts began with Sumerian cuneiform-inscribed clay and evolved towards pigment on papyrus, parchment and paper. Also, stone and ropes were used to store information in the cultures of the Scandinavians and Incas. During the Middle Ages, paper was the main storage medium, first as paper rolls and later as books. In the 19th century, photographs and phonographs became available and in our own century film, shellac and vinyl records and a great variety of different magnetic and optical media have become available.

The main storage medium is nevertheless still paper. Our paper- bound cultural heritage has always faced sudden serious threats and we are now facing the risk of a collective memory loss through the decomposition of the paper. Before 1850, paper was a high-quality product and the raw material was taken from rags. After 1850, the wooden-fibre content increased — a raw material which now has begun to fall apart in an accelerating self-destructive process.

This problem may be compared to the destruction of Venice, which implies another collective memory loss. The buildings there now tend to slowly fall apart due to the diminishing ground-water level and the beautiful faces decompose due to acid rainfall. There are no natural counter-measures to these problems and the consequences are very difficult to forecast.

A third example of collective memory loss occurred in  Alexandria. It is said that more than 1 million papyrus manuscripts in its large library were destroyed in AD 48 by the Roman Emperor Caesar. This is considered to have delayed European development by at least one hundred years.

Human evolution that was earlier governed by genes is today governed by ideas due to the accessibility of a huge collective memory, but also due to the extension of human sensing capabilities by artefacts. Examples of such artefacts are the telescope, the microscope, the telephone and so on. The principles behind knowledge accumulation and augmentation of mental capability presented here may be called noogenetics (from the Greek noos, meaning mind) to distinguish them from the ordinary biogenetic development. The noogenetic equivalent to biogenetic mutations are new ideas, inventions and works of art.

Source: Skyttner Lars (2006), General Systems Theory: Problems, Perspectives, Practice, Wspc, 2nd Edition.

Leave a Reply

Your email address will not be published. Required fields are marked *