Basic concepts of communication theory

The theoretical problem of communication is possible to define as: to make a representation in one place of a presentation already existing in another place. This formulation is, however, not complete as the communication process often is used to disinform or deceive a receiver. To get a total definition the words trustful or misleading have to be inserted before the word ‘representation’ according to the intention of the transmitter. A successful communicated false message is a favoured misunderstanding.

The communication per se is usually transference of representative substitutions for that which should be communicated. Concluded in classic communication theory (Shannon, Weaver 1946) this theory applies to all sorts of transference in one or more directions of matter (as objects), energy or information. Shannon’s own definition of the communication problem was ‘reproducing at one point either exactly or approximately a message selected at another point’. A more behavioural definition of communication offered by Warren Weaver (1949) reads: ‘All of the procedures by which one mind may affect another.’ Without losing its validity, this definition can similarly be applied to communication between machines. The transference of meaning between systems by the conveying of information is thus by definition communication. Transference of valued phenomena (most often matter/energy) is called transaction. Communication and transaction are the only existing system interactions. As a sign is a carrier of a content, only human beings can produce signs. Signs possess their meaning by virtue of the inter- subjective system of other signs. Most signs point to other signs like language which creates words and not only reflects pre-given words.

A message is composed by one or more signs consisting of signals and/or symbols. A sign is everything which can be taken as adequately substituting for something else. ‘A sign is something which stand for anything for somebody’. It thus designates an establishes relationship between an idea and its expression. Most often the sign seems to be more easily comprehended than the thing it signifies, while the thing itself is more difficult to comprehend. A sign always exists in a context of shared understanding.

A signal is a sign consisting of a physical phenomenon in the environment which has a direct relation to its object and is itself a part of what it represents. Formally, the signal represents nothing and has no symbolic function. It has no need for active interpretation and supplies its message directly thus evoking an immediate reaction from the receiver. Signals do solely deal with what exists in the vicinity of the user and concerns the external reality. Red rockets launched at sea is an emergency signal understood by all seamen. Signals may be transmitted in time, for example as whistle-blows, or in space as print or pictures. Animals use signals in case of danger for attack, discovery of food or as territory mark.

A special kind of signal is the cue which tend to be permanently ON as a source of information. The signal, on the other hand, can be both in an ON and OFF state. In terms of energy expenditure the signal is associated with certain costs of expression while the cue normally not includes such costs. The yellow metal sheet boxes in Swedish town areas are typical cues that inform us of the existing postal service. At sea navigation marks is another example.

A symbol is a mental representation regarding the internal reality referring to its object by a convention and produced by the conscious interpretation of a sign. In contrast to signals, symbols may be used every time if the receiver has the corresponding representation. Symbols also relate to feelings and thus give access not only to information but also to the communicator’s motivational and emotional state. The use of symbols makes it possible for the organism using it to evoke in the receiver the same response it evokes in himself. To communicate with symbols is to use a language. Symbols are equivalent to data in the classic language of information system.

To sum up, communication originated from the transference of objects and later came to be involved with the handling of signs representing the object. Ultimately, it handled symbols representing the signs. Signals regard the world around while symbols (and language) regard the internal, mental world. Human communication is therefore contextually independent while animal communication is effectively tied to a given context by their use of signals.

A message propagating through space and time always includes three main qualities, informability, detectability and localizability. Normally the sender tries to optimize all of these qualities in order to get the best possible communication. In certain environments and situations, however, some of these qualities must be suppressed or neglected. Thus it make sense to speak of a situational composition of  the  message’s main qualities.

An emergency message from a shot-down fighter pilot must have good detectability and informability, but preferably no localizability, if his rescue team are to have a fair chance to retrieve him before the enemy locates him. On the other hand, after successful receiving of the message, the searchers need both direction and distance to their goal. Hence the necessity for changing communication symmetry between transmitter and receiver over time. As a matter of fact, the concepts above lies at the heart of signal detection theory, in itself a part of communication theory.

In practice, however, the symmetry in communication often is an assymetry as it has a direction going from the more to the less competent. It is always possible to formulate a message describing a behaviour but not always possible to reconstruct a behaviour from its description. Another phenomenon influencing a communication situation is metacommunication keys. They are always attached to indicate how the recipient should interpret the message. Such hints use specific behaviours like gestures, mimics etc. (see p. 215). A communication situation is hierarchized on several levels where symbols and behaviours alternate. As we will see, a long-range correlation between used symbols in messages show up. The variations are random within short series but correlated within series exceeding a certain length.

An epistemological problem related to communication is to detect if there is any message at all. Every object in a sense will carry a message. To ensure that it has no information it must be totally blank or totally random. A pattern that is totally uniform repeating itself like a square tile pattern of a bathroom floor has no information content. This phenomenon is especially relevant for radio astronomers listening for intelligent messages transmitted from extra-terrestrial sources. In such a one-way situation, the first difficulty is to identify the metamessage. A metamessage is an indication that there exists some kind of intelligent message. A sealed envelope or a floating bottle (if you are on the beach of an uninhabited island) are tangible examples of a probably existing message.

The radio astronomer has nothing tangible to expect, he must rely on the regularities of certain electronic patterns detected by himself or his computers. If something appears as a logic pattern, it must be regarded as relating to a time scale. A metamessage might very well be hidden in a time scale that exceeds the human life span. Alternatively its time scale may be of a duration too short for a human being to apprehend. If a metamessage is apprehended as such, attention is concentrated on the external message. Decoding of the external message requires knowledge of its implicit structure and symbol pattern. It is possible to add general instructions to the external message on how to decode it. The intergalactic gramophone records loaded on board the two Voyager spacecraft launched in 1977 have instructions on their covers on how to play them. The internal message is the real content of the transmission. Subtle ideas, emotions, and the possibility of ‘reading between the lines’ are typical of its content.

In the definition of the theoretical problem of communication theory, the possibility of misleading communication was mentioned. An analysis of this phenomenon reveals the possible involvement of a third, exploiting part in the communication process. This part can be both a transmitter and receiver and intervene by:

  • False signalling
  • Deceptive signalling
  • Supplementary signalling

With false signalling, the purpose is to deceive the receiver and thereby secure certain advantages. It is achieved by transmitting false information related to sender, addressee or contents of a message. A false origin of a message is often carefully created and concealed. Deceptive signalling is generally used to create impressions of nonexisting activities and circumstances, favourable for the transmitter.

Irrelevant or heavy-biased information may be used. Supplementary signalling is employed to maintain an established known signalling pattern, the deviation of which could unmask sensitive information concerning the sender. It may be concluded in ‘communication as usual’.

Also jamming, an act of open hostility with the aim to disturb or block ongoing communication, is common. The main concern for the user of this strategy is how to conceal the origin of the blocking signal. A large- scale example is the previous Soviet jamming of transmissions from the Voice of America radio station.

Communication is possible to categorize in two different methods, the analogue and the digital. The analogue method of communication has no either/or, instead it represents both/and. It is an ongoing continuum and symbolizes an analogue or icon of a real process and as such it is a process of relationships. Digital communication represents the choice between either/or and is a reproduction of structure and pattern. Hormone communication in the animal body is chemical and analogue while nerve cell communication is electrochemical and digital.

Speech is digital communication in the presence of noise with the help of error correction. Words are transmitted as strings of phonemes, an equivalent of bytes. Existing languages only employ about 30 phonemes, the building block of speech. Error correction works by use of redundancy which enables the receiver to restore the original message in spite of errors and omissions. The redundancy of European languages is between 50 to 75 percent.

Speech may remain intelligible with up to 50% errors and omissions. This is according to Shannon’s theory which works for any set of symbols if they are distinct and finite in number (See p. 219). Speech is superior to analog animal call and sounds which is much more sensitive for noise not possible to filter out. It can be adopted to all human fields of activities. When no spoken common language exists, people have to use older analog communication methods like imitative gestures and icons.

Natural language is characterized by an openness, permitting  all kinds of new messages and represents the most advanced form of digital communication. Here the words represent fixed points for concepts, and to manipulate the words is to manipulate the concepts themselves. All living systems, however, employ both analogue and digital methods in form and function at some level of the communication system. Verbalization and symbolization include the digitization of the analogue. In human communication the translation from analogue to digital often results in a gain of information but a loss of meaning. Alteration between the two methods often takes place when communication crosses certain types of boundaries (transducing).

An illustration of the differences between the analogue and digital mode is presented in the following list of opposites:

Although the concept channel is a main part of classic communication theory, it states nothing regarding their different qualities. In most cases channels are defined as optic, acoustic or electric. A more exhaustive presentation of channels possible to use in animal communication has been done by the author according to the types of senses involved. These channels may be called natural channels and work with different carriers of the actual information (Skyttner 1993). The carriers are sometimes called markers (Miller 1976). In the natural channels, air, soil and water serve as markers. A marker is most often an object or some form of matter that stores and forwards information. The natural channels can be used either in two-way, interactive mode or in a one-way, single-directed mode observing the fact that communication requires at least two individuals.

When a natural channel is used for observation, measurement, detection or navigation only one individual is required under the premise that nature does not communicate to us with language or signs. Such a channel may be used either in an active or a passive mode. For a list of the natural channels, see Table 4.1 below.

Table 4.1 The natural channels.

                • Acoustic channel: hearing
                • Optic channel: vision
                • Chemical channel: taste and smell
                • Mechanical channel: touch, vestibular and kinaesthetic
                • Thermal channel: chill/heat sensing
                • Electric channel: electric-field sensing
                • Magnetic channel: magnetic-field sensing
                • Echolocation channel: biosonar information

Of the natural channels, the acoustic and optic are the main conveyors of communication. Hereby visual and auditory components of the message often interact. Acoustic signals are by nature both transitory and one dimensional while optic signals may be considered two or sometimes three-dimensional. Optic signals may sometimes be transitory and sometimes non-transitory. Compare the nature of traffic lights with their relatives, the traffic signs.

The biosonar channel is quite special, mainly used by bats and dolphins for detection and navigation. Shape, texture, size, distance, velocity and location of a certain object is pinpointed with good precision by use of this channel.

Source: Skyttner Lars (2006), General Systems Theory: Problems, Perspectives, Practice, Wspc, 2nd Edition.

Leave a Reply

Your email address will not be published. Required fields are marked *