The Renaissance paradigm

With the coming of the 16th century, the prescientific stage is succeeded by one in which science is acknowledged as capable of describing phenomena, as a route to knowledge. The introspective, absorbed mentality of scholasticism left room for a rediscovery of the external reality. Learned men began to understand the value of careful, reiterated observations and a careful methodical analysis when confronted with guesses, preferences, inspirations or revelations.

Science itself became a source for the development of new technologies. A growing respect for facts tested in valid experiments and a proficiency in the communication of knowledge and opinions emerged. Teleological explanations of observed regularities in human environment (the idea that physical systems are guided by or drawn towards a final goal), earlier seen as a norm for various phenomena, were gradually abandoned. In place of those, laws of Nature came to be formulated on a mathematical basis and deduced from mechanical observations. By this means only factors directly influencing the course of events were considered and the explanatory attitude was replaced by a descriptive outlook. The foundation of what has been called the scientific revolution with the mathematical-physical way of thinking and its experimental method, was put in place.

A new possibility to cope with human existence was introduced with the emergence of increased knowledge in astronomy. With the discoveries of Nicolaus Copernicus (1473-1543) the geocentric world view was slowly abandoned in favour of a new heliocentric theory for the movements of celestial bodies. Influenced by earlier aesthetic preferences he continued to consider all planetary movements to be perfectly circular. Thoughts about an infinite Universe and world multiplicity vindicated by the philosopher Giordano Bruno (1548-1600) were considered to be so provocative by the church that he was sentenced to death and burned at the stake. Tycho Brahe (1546-1601) developed a newly elaborated technique for observation of planetary movements thereby improving the theory. His achievement is implemented by Johannes Kepler (1571- 1630) to prove the elliptic nature of planet orbiting (The three laws of Kepler). Through the invention of the telescope by Galileo Galilei (15641642) it is possible to have a more realistic perspective on the planet Earth. The Earth can no longer be seen as the centre of all phenomena when it is one among several planets moving around the sun. The discovery of huge numbers of stars proved that the universe is both larger and more diverse than decreed by the Church and theologians. Teleological explanation of motion was discarded and motion is now seen as a force acting on bodies rather than these body’s striving to join an origin. In the thoughts of Galilei we see the beginning of the mechanistic world view and the separation between religion and science. ‘The world of nature is the field of science’.

Thanks to his experimental and mathematical approach, Galilei was considered to be the first modem scientist. As a researcher he differentiated between quantitative and qualitative properties. The latter, like colour, taste, and smell were descriptions for things existing only in our consciousness and therefore unfit for use within science (which had to be pursued by universal data originating from the objects). Questions like ‘why’ were more and more replaced by questions like ‘how’. From now on, a distinction between research and science is established where research is the production of knowledge and science implies the creation of conditions favorable for the continuation of research.

Another researcher, René Descartes (1596-1650), a contemporary of Galileo, contributed his integrated philosophy from chaos to cosmos. He is considered the first rationalist and extended the separation between religion and science to one between body and mind, dualism. Descartes differs between the body which belongs to the objective world of physic reality (the domain of science) and that which belongs to the subjective world of the mind with its thought and feelings (the domain of religion). The dualism implies that body and soul is separated from each other but is also in a ranking order, a kind of control thinking. The soul is what commands and body (the nature) is what has to obey. In a sense, this separation of mind and matter was historically unavoidable in order for science to stand free from the all-mighty church. This fundamental breach between subject and object became the starting point for the category-thinking of modern society. Dichotomies like man and nature, spirit and matter, male and female became part of western thinking.

From here on, the Western religious tradition holding human beings as something unique in this world and perhaps in the universe, began its implacable retreat. Human consciousness no longer mirrors a divine origin, only itself. Old religious authorities were succesively replaced by other sovereignties and theological models of explanation were changed to scientific.

Most of the natural phenomena surrounding man seemed however still to be inexplicable, i.e. without apparent causation. The explanations offered were of a purely superstitious nature. In spite of this, it was generally believed, as a principle if not in practice, that a complete understanding of the world is possible. When the Renaissance scientist looks about he sees his own world as a relatively small island of certainty surrounded by a sea of accepted mystery.

The birth of modern science must be seen in relation to the power of the church. The influence of the papal theocracy and the religious world view influenced the course of development. There was very little difference between priests and learned men. The trials of Giordano Bruno and Galileo Galilei showed that science was in danger if it interfered with social questions, that is, the domain and the authority of the Pope. Science had to declare itself independent and neutral, and concepts such as impartiality and objectivity soon became its hallmark, influencing modern civilization much more strongly than religion. The religious imperative of man’s supremacy over himself was successively superseded by the scientific imperative of the human right to supremacy over nature. In our time, at the end of the 20th century, the concept of objectivity and impartiality is still relevant — if we acknowledge its limitations.

At the time of the scientific revolution, the European university was firmly established and considered as a conduce to rapid development. The first universities were a further development of a number of cathedral schools and had no intentions to. be the servant of society. The aim of the professors, teachers, and students was to take advantage of their own interests and protect the activity against encroachment from both church and state. The resulting alliance became an organization so successful that it survived half a millennium. The university as a neutral zone, relatively free from religious and government authorities and with its own administration of justice, could offer a sanctuary of freedom.

Source: Skyttner Lars (2006), General Systems Theory: Problems, Perspectives, Practice, Wspc, 2nd Edition.

Leave a Reply

Your email address will not be published. Required fields are marked *